久久综合丝袜日本网手机版,日韩欧美中文字幕在线三区,亚洲精品国产品国语在线,极品在线观看视频婷婷

      <small id="aebxz"><menu id="aebxz"></menu></small>
    1. 等比數(shù)列教學實錄設計

      時間:2022-07-01 23:56:58 語文 我要投稿
      • 相關推薦

      等比數(shù)列教學實錄設計

        師:上節(jié)課我們對等差數(shù)列進行了復習,在數(shù)列中另一類重要的數(shù)列是什么?

      等比數(shù)列教學實錄設計

        生:等比數(shù)列.

        師:我們這節(jié)課復習等比數(shù)列.(點課題并板書)通過課前預習,請同學們思考下列幾個問題:

        1.等比數(shù)列的定義.

        2.等比數(shù)列通項公式、前n項和公式.

        3.等比中項的概念.

        4.等比數(shù)列最基本性質.

        學生A:回答問題1,如果一個數(shù)列從第二項起每一項與它前一項的商是同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做這個等比數(shù)列的公比,記為q.

        師:在這個定義中需要強調的有哪些?

        學生A:

        1.數(shù)列從第二項起.

        2.“商”字,即數(shù)列中每一項都不為0.

        3.同一個常數(shù).

        師:常數(shù)列是等比數(shù)列,這句話對嗎?

        學生A:不對,非零常數(shù)列是等比數(shù)列,也是等差數(shù)列;零常數(shù)列是等差數(shù)列但不是等比數(shù)列.

        學生B:回答問題2,等比數(shù)列通項公式為:.

        推廣為:.其中m,n∈N*.

        等比數(shù)列前n項和公式為:

        師:在應用等比數(shù)列前n項和公式時一定要注意公比得1與不得1兩種情況.

        學生C:回答問題3,若a,b,c成等比數(shù)列,則b為a,c的等比中項,且.

        師:兩個數(shù)的等比中項有兩個,這與兩個數(shù)的等差中項不同.

        學生D:回答問題4,等比數(shù)列有如下性質:

        1.若m+n=p+q,m,n,p,q∈N*,則am·an=ap·aq.

        2.若Sn≠0,則Sn,S2n-Sn,S3n-S2n成等比數(shù)列.

        3.下標成等差數(shù)列的項構成等比數(shù)列.

        師:以上幾位同學回答得很好,下面我們做幾道練習題.

        教師在黑板上出幾道小練習題,學生在課上迅速完成,然后口答.

        1.在等比數(shù)列中,

        A. B. C.或 D.-或-

        2.一個等比數(shù)列的前n項和為48,前2n項和為60,則前3n項和為( )

        A.183 B.108 C.75 D.63

        3.在各項均為正數(shù)的等比數(shù)列{an}中,若a5a6=9,則log3a1+log3a2+log3a3+…+log3a10=____.

        4.若{an}為等比數(shù)列,且a1+a2+a3=7,a1a2a3=8,求an.

        學生E:1題選C.在等比數(shù)列{an}中,a7a11=a4a14=6,又a4+a14=5,

        是或,即選C.

        學生F:2題選D.在等比數(shù)列中,由性質2,前n項和為48,次n項和為12,得末n項和為3,故前3n項和為63,即選D.

        學生G:填10.因為log3a1+log3a2+log3a3+…+log3a10=log3(a1a2…a10),

        又a1a10=a2a9=…=a5a6=9,

        故log3(a1a2…a10)=log395=10.

        學生H:由已知得解得或

        所以an=2n-1或an=23-n

        師:上面幾名同學完成得很好,在解題中我們需注意等比數(shù)列性質的應用.下面我們解決較綜合性問題,找三名同學板演.

        1.設等比數(shù)列{an}的公比為q(q>0),它的前n項和為40,前2n項和為3280,且在前n項和中的數(shù)值最大的項為27,求數(shù)列的第2n項.

        2.已知{an}的是首項為2,公式為的等比數(shù)列,Sn為它的前n項和.

        (1)用Sn表示Sn+1;

        (2)是否存在自然數(shù)c和k,使得成立?

        3.設Sn為數(shù)列{an}的前n項和,且滿足2Sn=3(an-1),

        (1)證明數(shù)列{an}是等比數(shù)列,并求Sn;

        (2)若bn=4n+5,將數(shù)列{an}和{bn}的公共項按它們在原數(shù)列中順序排成一個新的數(shù)列{dn},證明{dn}是等比數(shù)列,并求其通項公式.

        三個學生板演后,師生進行點評,剩余時間留給學生質疑答疑.

        評析:

        本節(jié)課是一節(jié)高三復習課,教學活動主要以回顧、歸納、訓練的形式展開.采用了師生互動的開放式教學模式,以學生為主體、教師為主導的教學理念,主要體現(xiàn)在如下幾個方面:

        1.打破以往教師“一言堂”的教學模式,代之以學生課上活動,教師起穿針引線的作用.由學生自己動手歸納總結,解決問題.它的步驟是:布置預習內容(知識內容、題型)----課上提出問題----學生回答問題----補充歸納、強調注意事項----鞏固練習----個別答疑.

        2.體現(xiàn)了課堂教學從“灌輸式”到“引導開放式”的轉變,以教師提出問題、學生解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課上教學效果.

        3.營造開放性課堂氛圍,使學生在輕松、愉悅的環(huán)境下完成學習任務,提高了課堂教學效果.通過板演,強化解題的規(guī)范性、嚴謹性.

        為適應現(xiàn)在高考要求,復習課應以提高學生自身素質為出發(fā)點,以搞好高三復習備考,提高備考效率為目標,這是擺在所有高三教師面前需要解決的問題,我們廣大教師在今后的教學實踐中要不斷探討.

      【等比數(shù)列教學實錄設計】相關文章:

      等比數(shù)列的前n項和教學設計06-08

      《掌聲》教學的設計與課堂實錄素材07-02

      《小猴子下山》的課堂教學實錄設計07-04

      托班《種子》教學設計課堂實錄07-03

      《我是什么》課堂教學實錄設計07-04

      白鵝教學實錄教學實錄案例反思07-03

      《要下雨了》教學設計和教學實錄(通用5篇)05-07

      紀念日研究教學設計及課堂實錄07-03

      示兒課堂設計之二的教學實錄范文07-04

      水上城市威尼斯教學設計及課堂實錄07-02