初中數(shù)學正方形定理公式匯總
正方形,是特殊的平行四邊形之一。即有一組鄰邊相等,并且有一個角是直角的平行四邊形稱為正方形,又稱正四邊形。以下是小編給大家?guī)淼某踔袛?shù)學正方形定理公式,希望對大家有幫助。
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚膶窍嗟;
、燮叫兴倪呅蔚膶蔷互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
直角三角形的性質(zhì):
、僦苯侨切蔚膬蓚銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚角互余的三角形是直角三角形;
、谌绻切蔚娜呴La、b 、c有下面關系a^2+b^2=c^2
那么這個三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
四邊形定理公式知識點
1 多邊形
1.1多邊形
延長多邊形的任意一條邊,如果這個多邊形的其他各邊都在這些延長所得的直線的同旁,我們把這樣的多邊形叫做凸多邊形
在多變形中,連結不相鄰兩個定點的線段叫做多邊形的對角線
1.2多變形的內(nèi)角和
多變形的內(nèi)角和定理 n邊形的內(nèi)角和等于(n-2)x180
多邊形的外角和定理 任意多邊形的外角和等于360
2 平行四邊形
2.1平行四邊形的定義和性質(zhì)
兩組對邊分別平行的四邊形叫做平行四邊形
平行四邊形性質(zhì)定理1 平行四邊形的對邊相等
平行四邊形性質(zhì)定理2 平行四邊形的對角相等
定理 夾在兩條平行線間的平行線段相等
同時垂直于兩條平行線的直線叫做這兩條平行線的公垂線,公垂線夾在平行線間的線段叫做公垂線段,兩條平行線間公垂線短的長叫做這兩條平行線間的距離
推論 平行線間的距離處處相等
平行四邊形性質(zhì)定理3 平行四邊形對角線互相平分
2.2平行四邊形的判定
平行四邊形判定定理1 兩組對邊分別相等的四邊形是平行四邊形
平行四邊形判定定理2 兩組對角分別向等的四邊形是平行四邊形
平行四邊形判定定理3 對角線互相評分的四邊形是平行四邊形
平行四邊形判定定理4 一組對邊平行且相等的四邊形是平行四邊形
2 3特殊的平行四邊形
一個角是直角的平行四邊形叫做矩形
矩形性質(zhì)定理1 矩形的四個角都是直角
矩形性質(zhì)定理2 矩形的對角線相等
矩形的判定定理1 有三個角是直角的四邊形是矩形
舉行的判定定理2 對角線相等的平行四邊形是矩形
菱形的性質(zhì)定理1 菱形的四條邊都相等
菱形的性質(zhì)定理2 菱形的對角線互相垂直,并且每條對角線平分一組對角
菱形的判定定理1 四邊都相等的四邊形是菱形
菱形的判定定理2 對角線互相垂直的平行四邊形是菱形
正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等
正方形性質(zhì)定理2 正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
2.4中心對稱
定理1 成中心對稱的兩個圖形,對稱點連線都過對稱中心,并且被對稱中心平分
定理2 中心對稱的兩個圖形是全等形
定理 平行四邊形是中心對稱形,它的對稱中心是兩條對角線的交點
3 梯形
3.1梯形
我們把一組對邊平行而另一組對邊不平行的四邊形叫做梯形
梯形中,平行的兩邊叫做梯形的底,較短的底稱為上底,較長的底稱為下底,不平行的兩邊叫做梯形的腰
3.2等腰梯形與直角梯形
我們把兩腰相等的梯形叫做等腰梯形,把有一個角是直角的梯形叫做直角梯形
等腰梯形性質(zhì)定理1 等腰梯形在同一底上的兩個角相等
等腰梯形性質(zhì)定理2 等腰梯形的兩條對角線相等
等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
3.3四邊形的分類
3.4平行線等分線段定理
平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊
3.5三角形的中位線
連結三角形兩邊中點的線段叫做三角形的中位線
三角形中位線定理 三角形的中位線平行于第三邊,并且等于第三邊的一半
三角形三條中線的交點叫做三角形的重心
3.6梯形的中位線
連結梯形兩腰中點的線段叫做梯形的中位線
梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半
【初中數(shù)學正方形定理公式】相關文章:
初中數(shù)學正方形定理公式06-25
關于初中數(shù)學正方形定理公式06-26
初中數(shù)學正方形定理公式分享06-24
關于初中數(shù)學正方形公式定理匯編06-25
關于初中數(shù)學正方形定理公式匯總06-26
初中數(shù)學正方形定理公式復習資料06-26
初中數(shù)學定理公式06-25
初中數(shù)學定理公式總結11-13
關于初中數(shù)學的定理公式06-26